36     if (fabs(update) == 0.)
 
   46             weights[f->weight_index & thread_mask] += update * f->x;
 
   57             quad_update(weights, *temp.
begin, ex->
atomics[(int32_t)(i[1])], thread_mask, update);
 
   64     update *= page_feature.
x;
 
   66         weights[(halfhash + elem->weight_index) & mask] += update * elem->x;
 
uint32_t weight_index
Hashed index in weight vector. 
uint32_t vw_size_t
vw_size_t typedef to work across platforms 
virtual void train(VwExample *&ex, float32_t update)
T get_element(int32_t index) const 
T * end
Pointer to last set element in the array. 
virtual ~CVwNonAdaptiveLearner()
T * begin
Pointer to first element of the array. 
Class CVwEnvironment is the environment used by VW. 
void(* update)(float *foo, float bar)
Class v_array taken directly from JL's implementation. 
CVwRegressor * reg
Regressor object that will be used for getting updates. 
float32_t ** weight_vectors
Weight vectors, one array for each thread. 
int32_t get_num_elements() const 
const int32_t quadratic_constant
Constant used while hashing/accessing quadratic features. 
v_array< vw_size_t > indices
Array of namespaces. 
Base class for all VW learners. 
DynArray< char * > pairs
Pairs of features to cross for quadratic updates. 
float32_t x
Feature value. 
all of classes and functions are contained in the shogun namespace 
CVwEnvironment * env
Environment. 
vw_size_t thread_mask
Mask used by regressor for learning. 
v_array< VwFeature > atomics[256]
Array of features.