SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
List of all members | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes
CKernelDependenceMaximization Class Reference

Detailed Description

Class CKernelDependenceMaximization, that uses an implementation of CKernelIndependenceTest to compute dependence measures for feature selection. Different kernels are used for labels and data. For the sake of computational convenience, the precompute() method is overridden to precompute the kernel for labels and save as an instance of CCustomKernel.

Definition at line 49 of file KernelDependenceMaximization.h.

Inheritance diagram for CKernelDependenceMaximization:
Inheritance graph
[legend]

Public Member Functions

 CKernelDependenceMaximization ()
virtual ~CKernelDependenceMaximization ()
void set_kernel_features (CKernel *kernel)
CKernelget_kernel_features () const
void set_kernel_labels (CKernel *kernel)
CKernelget_kernel_labels () const
virtual void set_algorithm (EFeatureSelectionAlgorithm algorithm)=0
virtual const char * get_name () const
virtual float64_t compute_measures (CFeatures *features, index_t idx)
virtual CFeaturesremove_feats (CFeatures *features, SGVector< index_t > ranks)
virtual void set_policy (EFeatureRemovalPolicy policy)
virtual bool init (CFeatures *features)
virtual void set_labels (CLabels *labels)
virtual CFeaturesapply (CFeatures *features)
SGVector< index_tget_selected_feats ()
virtual EFeatureClass get_feature_class ()
virtual EFeatureType get_feature_type ()
virtual EPreprocessorType get_type () const
void set_target_dim (index_t target_dim)
index_t get_target_dim () const
EFeatureSelectionAlgorithm get_algorithm () const
EFeatureRemovalPolicy get_policy () const
void set_num_remove (index_t num_remove)
index_t get_num_remove () const
CLabelsget_labels () const
virtual void cleanup ()
virtual CSGObjectshallow_copy () const
virtual CSGObjectdeep_copy () const
virtual bool is_generic (EPrimitiveType *generic) const
template<class T >
void set_generic ()
void unset_generic ()
virtual void print_serializable (const char *prefix="")
virtual bool save_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
virtual bool load_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
DynArray< TParameter * > * load_file_parameters (const SGParamInfo *param_info, int32_t file_version, CSerializableFile *file, const char *prefix="")
DynArray< TParameter * > * load_all_file_parameters (int32_t file_version, int32_t current_version, CSerializableFile *file, const char *prefix="")
void map_parameters (DynArray< TParameter * > *param_base, int32_t &base_version, DynArray< const SGParamInfo * > *target_param_infos)
void set_global_io (SGIO *io)
SGIOget_global_io ()
void set_global_parallel (Parallel *parallel)
Parallelget_global_parallel ()
void set_global_version (Version *version)
Versionget_global_version ()
SGStringList< char > get_modelsel_names ()
void print_modsel_params ()
char * get_modsel_param_descr (const char *param_name)
index_t get_modsel_param_index (const char *param_name)
void build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict)
virtual void update_parameter_hash ()
virtual bool parameter_hash_changed ()
virtual bool equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false)
virtual CSGObjectclone ()

Public Attributes

SGIOio
Parallelparallel
Versionversion
Parameterm_parameters
Parameterm_model_selection_parameters
Parameterm_gradient_parameters
ParameterMapm_parameter_map
uint32_t m_hash

Protected Member Functions

virtual void precompute ()
virtual CFeaturescreate_transformed_copy (CFeatures *features, index_t idx)
virtual CFeaturesapply_backward_elimination (CFeatures *features)
virtual void adapt_params (CFeatures *features)
index_t get_num_features (CFeatures *features) const
virtual TParametermigrate (DynArray< TParameter * > *param_base, const SGParamInfo *target)
virtual void one_to_one_migration_prepare (DynArray< TParameter * > *param_base, const SGParamInfo *target, TParameter *&replacement, TParameter *&to_migrate, char *old_name=NULL)
virtual void load_serializable_pre () throw (ShogunException)
virtual void load_serializable_post () throw (ShogunException)
virtual void save_serializable_pre () throw (ShogunException)
virtual void save_serializable_post () throw (ShogunException)

Protected Attributes

CKernelm_kernel_features
CKernelm_kernel_labels
CIndependenceTestm_estimator
CFeaturesm_labels_feats
index_t m_target_dim
EFeatureSelectionAlgorithm m_algorithm
EFeatureRemovalPolicy m_policy
index_t m_num_remove
CLabelsm_labels
CSubsetStackm_subset

Constructor & Destructor Documentation

Default constructor

Definition at line 37 of file KernelDependenceMaximization.cpp.

Destructor

Definition at line 54 of file KernelDependenceMaximization.cpp.

Member Function Documentation

virtual void adapt_params ( CFeatures features)
protectedvirtualinherited

Tunes the parameters which are required to compute the measure based on current features. Overridden in the subclasses. Here it does nothing.

Parameters
featuresthe features based on which parameters are needed to be tuned for computing measures
virtual CFeatures* apply ( CFeatures features)
virtualinherited

Generic interface for applying the feature selection preprocessor. Acts as a wrapper which decides which actual method to call based on the algorithm specified.

Parameters
featuresthe input features
Returns
the result feature object after applying the preprocessor

Implements CPreprocessor.

virtual CFeatures* apply_backward_elimination ( CFeatures features)
protectedvirtualinherited

Applies backward elimination algorithm for performing feature selection. After performing necessary precomputing (defined by subclasses), it iteratively eliminates a number of features based on a measure until target dimension is reached.

Parameters
featuresthe input features
Returns
the result feature object after applying the preprocessor
void build_gradient_parameter_dictionary ( CMap< TParameter *, CSGObject * > *  dict)
inherited

Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.

Parameters
dictdictionary of parameters to be built.

Definition at line 1189 of file SGObject.cpp.

virtual void cleanup ( )
virtualinherited

performs cleanup

Implements CPreprocessor.

CSGObject * clone ( )
virtualinherited

Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.

Returns
an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed

Definition at line 1306 of file SGObject.cpp.

float64_t compute_measures ( CFeatures features,
index_t  idx 
)
virtualinherited

Method that computes the measures using test statistic computed by an instance of CIndependenceTest wiht the provided features and the labels

Parameters
featuresthe features on which the measure has to be computed
idxthe index that decides which features should we compute the measure on
Returns
the measure based on which features are selected

Implements CFeatureSelection< float64_t >.

Definition at line 105 of file DependenceMaximization.cpp.

CFeatures * create_transformed_copy ( CFeatures features,
index_t  idx 
)
protectedvirtualinherited

Helper method which removes the dimension specified via the index. It copies the rest of the features into a separate object via copy_dimension_subset() call.

Parameters
featuresthe features
idxindex of the dimension which is required to be removed
Returns
a new feature object with the specified dimension removed

Definition at line 77 of file DependenceMaximization.cpp.

CSGObject * deep_copy ( ) const
virtualinherited

A deep copy. All the instance variables will also be copied.

Definition at line 146 of file SGObject.cpp.

bool equals ( CSGObject other,
float64_t  accuracy = 0.0,
bool  tolerant = false 
)
virtualinherited

Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!

May be overwritten but please do with care! Should not be necessary in most cases.

Parameters
otherobject to compare with
accuracyaccuracy to use for comparison (optional)
tolerantallows linient check on float equality (within accuracy)
Returns
true if all parameters were equal, false if not

Definition at line 1210 of file SGObject.cpp.

EFeatureSelectionAlgorithm get_algorithm ( ) const
inherited
Returns
the feature removal algorithm being used
virtual EFeatureClass get_feature_class ( )
virtualinherited
Returns
the feature class, ::C_ANY

Implements CPreprocessor.

virtual EFeatureType get_feature_type ( )
virtualinherited
Returns
feature type

Implements CPreprocessor.

SGIO * get_global_io ( )
inherited

get the io object

Returns
io object

Definition at line 183 of file SGObject.cpp.

Parallel * get_global_parallel ( )
inherited

get the parallel object

Returns
parallel object

Definition at line 224 of file SGObject.cpp.

Version * get_global_version ( )
inherited

get the version object

Returns
version object

Definition at line 237 of file SGObject.cpp.

CKernel * get_kernel_features ( ) const
Returns
the kernel for features

Definition at line 131 of file KernelDependenceMaximization.cpp.

CKernel * get_kernel_labels ( ) const
Returns
the kernel for labels

Definition at line 137 of file KernelDependenceMaximization.cpp.

CLabels* get_labels ( ) const
inherited
Returns
the labels
SGStringList< char > get_modelsel_names ( )
inherited
Returns
vector of names of all parameters which are registered for model selection

Definition at line 1081 of file SGObject.cpp.

char * get_modsel_param_descr ( const char *  param_name)
inherited

Returns description of a given parameter string, if it exists. SG_ERROR otherwise

Parameters
param_namename of the parameter
Returns
description of the parameter

Definition at line 1105 of file SGObject.cpp.

index_t get_modsel_param_index ( const char *  param_name)
inherited

Returns index of model selection parameter with provided index

Parameters
param_namename of model selection parameter
Returns
index of model selection parameter with provided name, -1 if there is no such

Definition at line 1118 of file SGObject.cpp.

virtual const char* get_name ( ) const
virtual
Returns
the class name

Reimplemented from CDependenceMaximization.

Reimplemented in CBAHSIC.

Definition at line 79 of file KernelDependenceMaximization.h.

index_t get_num_features ( CFeatures features) const
protectedinherited

Returns the number of features of the provided feature object. Since the number of features doesn't make sense for all types of features, this helper method checks whether obtaining a num_features is possible and then calls get_num_features() on those features after proper type-cast

Parameters
featuresthe feature object
Returns
the number of features
index_t get_num_remove ( ) const
inherited
Returns
number or percentage of features removed in each iteration
EFeatureRemovalPolicy get_policy ( ) const
inherited
Returns
the feature removal policy being used
SGVector<index_t> get_selected_feats ( )
inherited
Returns
indices of selected features
index_t get_target_dim ( ) const
inherited
Returns
the target dimension
virtual EPreprocessorType get_type ( ) const
virtualinherited
Returns
the preprocessor type

Implements CPreprocessor.

Reimplemented in CBAHSIC.

bool init ( CFeatures features)
virtualinherited

Initialize preprocessor from features

Parameters
featuresthe features
Returns
true if init was successful

Implements CPreprocessor.

Definition at line 62 of file DependenceMaximization.cpp.

bool is_generic ( EPrimitiveType *  generic) const
virtualinherited

If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.

Parameters
genericset to the type of the generic if returning TRUE
Returns
TRUE if a class template.

Definition at line 243 of file SGObject.cpp.

DynArray< TParameter * > * load_all_file_parameters ( int32_t  file_version,
int32_t  current_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

maps all parameters of this instance to the provided file version and loads all parameter data from the file into an array, which is sorted (basically calls load_file_parameter(...) for all parameters and puts all results into a sorted array)

Parameters
file_versionparameter version of the file
current_versionversion from which mapping begins (you want to use Version::get_version_parameter() for this in most cases)
filefile to load from
prefixprefix for members
Returns
(sorted) array of created TParameter instances with file data

Definition at line 650 of file SGObject.cpp.

DynArray< TParameter * > * load_file_parameters ( const SGParamInfo param_info,
int32_t  file_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

loads some specified parameters from a file with a specified version The provided parameter info has a version which is recursively mapped until the file parameter version is reached. Note that there may be possibly multiple parameters in the mapping, therefore, a set of TParameter instances is returned

Parameters
param_infoinformation of parameter
file_versionparameter version of the file, must be <= provided parameter version
filefile to load from
prefixprefix for members
Returns
new array with TParameter instances with the attached data

Definition at line 491 of file SGObject.cpp.

bool load_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!

Parameters
filewhere to load from
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 320 of file SGObject.cpp.

void load_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.

Definition at line 1008 of file SGObject.cpp.

void load_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 1003 of file SGObject.cpp.

void map_parameters ( DynArray< TParameter * > *  param_base,
int32_t &  base_version,
DynArray< const SGParamInfo * > *  target_param_infos 
)
inherited

Takes a set of TParameter instances (base) with a certain version and a set of target parameter infos and recursively maps the base level wise to the current version using CSGObject::migrate(...). The base is replaced. After this call, the base version containing parameters should be of same version/type as the initial target parameter infos. Note for this to work, the migrate methods and all the internal parameter mappings have to match

Parameters
param_baseset of TParameter instances that are mapped to the provided target parameter infos
base_versionversion of the parameter base
target_param_infosset of SGParamInfo instances that specify the target parameter base

Definition at line 688 of file SGObject.cpp.

TParameter * migrate ( DynArray< TParameter * > *  param_base,
const SGParamInfo target 
)
protectedvirtualinherited

creates a new TParameter instance, which contains migrated data from the version that is provided. The provided parameter data base is used for migration, this base is a collection of all parameter data of the previous version. Migration is done FROM the data in param_base TO the provided param info Migration is always one version step. Method has to be implemented in subclasses, if no match is found, base method has to be called.

If there is an element in the param_base which equals the target, a copy of the element is returned. This represents the case when nothing has changed and therefore, the migrate method is not overloaded in a subclass

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
Returns
a new TParameter instance with migrated data from the base of the type which is specified by the target parameter

Definition at line 895 of file SGObject.cpp.

void one_to_one_migration_prepare ( DynArray< TParameter * > *  param_base,
const SGParamInfo target,
TParameter *&  replacement,
TParameter *&  to_migrate,
char *  old_name = NULL 
)
protectedvirtualinherited

This method prepares everything for a one-to-one parameter migration. One to one here means that only ONE element of the parameter base is needed for the migration (the one with the same name as the target). Data is allocated for the target (in the type as provided in the target SGParamInfo), and a corresponding new TParameter instance is written to replacement. The to_migrate pointer points to the single needed TParameter instance needed for migration. If a name change happened, the old name may be specified by old_name. In addition, the m_delete_data flag of to_migrate is set to true. So if you want to migrate data, the only thing to do after this call is converting the data in the m_parameter fields. If unsure how to use - have a look into an example for this. (base_migration_type_conversion.cpp for example)

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
replacement(used as output) here the TParameter instance which is returned by migration is created into
to_migratethe only source that is used for migration
old_namewith this parameter, a name change may be specified

Definition at line 835 of file SGObject.cpp.

bool parameter_hash_changed ( )
virtualinherited
Returns
whether parameter combination has changed since last update

Definition at line 209 of file SGObject.cpp.

void precompute ( )
protectedvirtual

Precomputes the kernel on labels and replaces the m_kernel_labels with an instance of CCustomKernel. Labels features are set via CDependenceMaximization::set_labels call.

Reimplemented from CFeatureSelection< float64_t >.

Definition at line 60 of file KernelDependenceMaximization.cpp.

void print_modsel_params ( )
inherited

prints all parameter registered for model selection and their type

Definition at line 1057 of file SGObject.cpp.

void print_serializable ( const char *  prefix = "")
virtualinherited

prints registered parameters out

Parameters
prefixprefix for members

Definition at line 255 of file SGObject.cpp.

CFeatures * remove_feats ( CFeatures features,
SGVector< index_t ranks 
)
virtualinherited

Method which handles the removal of features based on removal policy. see documentation of CFeatureSelection. For dependence maximization approach, the highest scoring features are removed. Therefore, only m_policy can only be N_LARGEST, PERCENTILE_LARGEST. see set_policy() method for specifying the exact policy

Parameters
featuresthe features object from which specific features has to be removed
ranksthe ranks of the features based on their measures, 0 being the lowest rank which corresponds to smallest measure.
Returns
the feature object after removal of features based on the policy

Implements CFeatureSelection< float64_t >.

Definition at line 129 of file DependenceMaximization.cpp.

bool save_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Save this object to file.

Parameters
filewhere to save the object; will be closed during returning if PREFIX is an empty string.
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 261 of file SGObject.cpp.

void save_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel.

Definition at line 1018 of file SGObject.cpp.

void save_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 1013 of file SGObject.cpp.

virtual void set_algorithm ( EFeatureSelectionAlgorithm  algorithm)
pure virtual

Abstract method which is overridden in the subclasses to set accepted feature selection algorithm

Parameters
algorithmthe feature selection algorithm to use

Implements CDependenceMaximization.

Implemented in CBAHSIC.

void set_generic< complex128_t > ( )
inherited

set generic type to T

Definition at line 38 of file SGObject.cpp.

void set_global_io ( SGIO io)
inherited

set the io object

Parameters
ioio object to use

Definition at line 176 of file SGObject.cpp.

void set_global_parallel ( Parallel parallel)
inherited

set the parallel object

Parameters
parallelparallel object to use

Definition at line 189 of file SGObject.cpp.

void set_global_version ( Version version)
inherited

set the version object

Parameters
versionversion object to use

Definition at line 230 of file SGObject.cpp.

void set_kernel_features ( CKernel kernel)
Parameters
kernelthe kernel for features (data)

Definition at line 99 of file KernelDependenceMaximization.cpp.

void set_kernel_labels ( CKernel kernel)
Parameters
kernelthe kernel for labels

Definition at line 115 of file KernelDependenceMaximization.cpp.

void set_labels ( CLabels labels)
virtualinherited

Setter for labels. This method is overridden to internally convert the labels to a dense feature object and set this feature in the independence test estimator. These labels serve as samples \(\mathbf{Y}\sim q\) in the independence test

Parameters
labelsthe labels

Reimplemented from CFeatureSelection< float64_t >.

Definition at line 186 of file DependenceMaximization.cpp.

void set_num_remove ( index_t  num_remove)
inherited

Use this method to set the number or percentile of features to be removed in each iteration.

Parameters
num_removenumber or percentage of features to be removed in each iteration
void set_policy ( EFeatureRemovalPolicy  policy)
virtualinherited
Parameters
policyfeature removal policy

Implements CFeatureSelection< float64_t >.

Definition at line 178 of file DependenceMaximization.cpp.

void set_target_dim ( index_t  target_dim)
inherited
Parameters
target_dimthe target dimension to achieve
CSGObject * shallow_copy ( ) const
virtualinherited

A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.

Reimplemented in CGaussianKernel.

Definition at line 140 of file SGObject.cpp.

void unset_generic ( )
inherited

unset generic type

this has to be called in classes specializing a template class

Definition at line 250 of file SGObject.cpp.

void update_parameter_hash ( )
virtualinherited

Updates the hash of current parameter combination

Definition at line 196 of file SGObject.cpp.

Member Data Documentation

SGIO* io
inherited

io

Definition at line 457 of file SGObject.h.

EFeatureSelectionAlgorithm m_algorithm
protectedinherited

Wrapper algorithm for feature selection

Definition at line 302 of file FeatureSelection.h.

CIndependenceTest* m_estimator
protectedinherited

The estimator for performing statistical tests for independence which is used for computing measures

Definition at line 157 of file DependenceMaximization.h.

Parameter* m_gradient_parameters
inherited

parameters wrt which we can compute gradients

Definition at line 472 of file SGObject.h.

uint32_t m_hash
inherited

Hash of parameter values

Definition at line 478 of file SGObject.h.

CKernel* m_kernel_features
protected

The kernel for data (features) to be used in CKernelIndependenceTest

Definition at line 93 of file KernelDependenceMaximization.h.

CKernel* m_kernel_labels
protected

The kernel for labels to be used in CKernelIndependenceTest

Definition at line 96 of file KernelDependenceMaximization.h.

CLabels* m_labels
protectedinherited

The labels for the feature vectors

Definition at line 316 of file FeatureSelection.h.

CFeatures* m_labels_feats
protectedinherited

The feature for the labels

Definition at line 160 of file DependenceMaximization.h.

Parameter* m_model_selection_parameters
inherited

model selection parameters

Definition at line 469 of file SGObject.h.

index_t m_num_remove
protectedinherited

Number or percentage of features to be removed. When the policy is set as ::N_SMALLEST or ::N_LARGEST, this number decides how many features in an iteration. For ::PERCENTILE_SMALLEST or ::PERCENTILE_LARGEST, this decides the percentage of current number of features to be removed in each iteration

Definition at line 313 of file FeatureSelection.h.

ParameterMap* m_parameter_map
inherited

map for different parameter versions

Definition at line 475 of file SGObject.h.

Parameter* m_parameters
inherited

parameters

Definition at line 466 of file SGObject.h.

EFeatureRemovalPolicy m_policy
protectedinherited

Feature removal policy

Definition at line 305 of file FeatureSelection.h.

CSubsetStack* m_subset
protectedinherited

The indices of features that are selected

Definition at line 319 of file FeatureSelection.h.

index_t m_target_dim
protectedinherited

Target dimension

Definition at line 299 of file FeatureSelection.h.

Parallel* parallel
inherited

parallel

Definition at line 460 of file SGObject.h.

Version* version
inherited

version

Definition at line 463 of file SGObject.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation