34 #ifndef __DEEPAUTOENCODER_H__
35 #define __DEEPAUTOENCODER_H__
42 template <
class T>
class CDenseFeatures;
172 virtual const char*
get_name()
const {
return "DeepAutoencoder"; }
virtual void set_contraction_coefficient(float64_t coeff)
SGVector< int32_t > pt_max_num_epochs
Represents a single layer neural autoencoder.
virtual CDenseFeatures< float64_t > * transform(CDenseFeatures< float64_t > *data)
SGVector< float64_t > pt_contraction_coefficient
A generic multi-layer neural network.
virtual ~CDeepAutoencoder()
Base class for neural network layers.
SGVector< float64_t > pt_gd_error_damping_coeff
SGVector< float64_t > pt_epsilon
Represents a muti-layer autoencoder.
virtual CDenseFeatures< float64_t > * reconstruct(CDenseFeatures< float64_t > *data)
virtual void pre_train(CFeatures *data)
SGVector< float64_t > pt_l1_coefficient
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
all of classes and functions are contained in the shogun namespace
virtual float64_t compute_error(SGMatrix< float64_t > targets)
virtual const char * get_name() const
The class Features is the base class of all feature objects.
virtual CNeuralNetwork * convert_to_neural_network(CNeuralLayer *output_layer=NULL, float64_t sigma=0.01)
SGVector< int32_t > pt_gd_mini_batch_size
SGVector< float64_t > pt_noise_parameter
SGVector< int32_t > pt_noise_type
SGVector< float64_t > pt_l2_coefficient
SGVector< int32_t > pt_optimization_method
SGVector< float64_t > pt_gd_momentum
SGVector< float64_t > pt_gd_learning_rate
SGVector< float64_t > pt_gd_learning_rate_decay