49 #endif //USE_GPL_SHOGUN 
  118     if (strcmp(name,
"LIBSVM_ONECLASS")==0)
 
  122         SG_INFO(
"created SVMlibsvm object for oneclass\n")
 
  124     else if (strcmp(name,
"LIBSVM_MULTICLASS")==0)
 
  128         SG_INFO(
"created SVMlibsvm object for multiclass\n")
 
  130     else if (strcmp(name,
"LIBSVM_NUMULTICLASS")==0)
 
  134         SG_INFO(
"created SVMlibsvm object for multiclass\n")
 
  137     else if (strcmp(name,
"SCATTERSVM_NO_BIAS_SVMLIGHT")==0)
 
  141         SG_INFO(
"created ScatterSVM NO BIAS SVMLIGHT object\n")
 
  143 #endif //USE_SVMLIGHT 
  144     else if (strcmp(name,
"SCATTERSVM_NO_BIAS_LIBSVM")==0)
 
  148         SG_INFO(
"created ScatterSVM NO BIAS LIBSVM object\n")
 
  150     else if (strcmp(name,
"SCATTERSVM_TESTRULE1")==0)
 
  154         SG_INFO(
"created ScatterSVM TESTRULE1 object\n")
 
  156     else if (strcmp(name,
"SCATTERSVM_TESTRULE2")==0)
 
  160         SG_INFO(
"created ScatterSVM TESTRULE2 object\n")
 
  162     else if (strcmp(name,
"LIBSVM_NU")==0)
 
  166         SG_INFO(
"created SVMlibsvm object\n")
 
  168     else if (strcmp(name,
"LIBSVM")==0)
 
  172         SG_INFO(
"created SVMlibsvm object\n")
 
  174     else if (strcmp(name,
"LARANK")==0)
 
  178         SG_INFO(
"created LaRank object\n")
 
  181     else if ((strcmp(name,
"LIGHT")==0) || (strcmp(name,
"SVMLIGHT")==0))
 
  185         SG_INFO(
"created SVMLight object\n")
 
  187     else if (strcmp(name,
"SVMLIGHT_ONECLASS")==0)
 
  191         SG_INFO(
"created SVMLightOneClass object\n")
 
  193     else if (strcmp(name,
"SVRLIGHT")==0)
 
  197         SG_INFO(
"created SVRLight object\n")
 
  199 #endif //USE_SVMLIGHT 
  200 #ifdef USE_GPL_SHOGUN 
  201     else if (strcmp(name,
"GPBTSVM")==0)
 
  205         SG_INFO(
"created GPBT-SVM object\n")
 
  207 #endif //USE_GPL_SHOGUN 
  208     else if (strcmp(name,
"MPDSVM")==0)
 
  212         SG_INFO(
"created MPD-SVM object\n")
 
  214     else if (strcmp(name,
"GNPPSVM")==0)
 
  218         SG_INFO(
"created GNPP-SVM object\n")
 
  220     else if (strcmp(name,
"GMNPSVM")==0)
 
  224         SG_INFO(
"created GMNP-SVM object\n")
 
  226     else if (strcmp(name,
"LIBSVR")==0)
 
  230         SG_INFO(
"created SVRlibsvm object\n")
 
  233     else if (strcmp(name, 
"KERNELRIDGEREGRESSION")==0)
 
  237             ui->ui_labels->get_train_labels());
 
  241     else if (strcmp(name,
"PERCEPTRON")==0)
 
  245         SG_INFO(
"created Perceptron object\n")
 
  248     else if (strncmp(name,
"LIBLINEAR",9)==0)
 
  252         if (strcmp(name,
"LIBLINEAR_L2R_LR")==0)
 
  255             SG_INFO(
"created LibLinear l2 regularized logistic regression object\n")
 
  257         else if (strcmp(name,
"LIBLINEAR_L2R_L2LOSS_SVC_DUAL")==0)
 
  260             SG_INFO(
"created LibLinear l2 regularized l2 loss SVM dual object\n")
 
  262         else if (strcmp(name,
"LIBLINEAR_L2R_L2LOSS_SVC")==0)
 
  265             SG_INFO(
"created LibLinear l2 regularized l2 loss SVM primal object\n")
 
  267         else if (strcmp(name,
"LIBLINEAR_L1R_L2LOSS_SVC")==0)
 
  270             SG_INFO(
"created LibLinear l1 regularized l2 loss SVM primal object\n")
 
  272         else if (strcmp(name,
"LIBLINEAR_L2R_L1LOSS_SVC_DUAL")==0)
 
  275             SG_INFO(
"created LibLinear l2 regularized l1 loss dual SVM object\n")
 
  278             SG_ERROR(
"unknown liblinear type\n")
 
  287     else if (strcmp(name,
"LDA")==0)
 
  291         SG_INFO(
"created LDA object\n")
 
  294     else if (strcmp(name,
"LPM")==0)
 
  302         SG_INFO(
"created LPM object\n")
 
  304     else if (strcmp(name,
"LPBOOST")==0)
 
  312         SG_INFO(
"created LPBoost object\n")
 
  315     else if (strncmp(name,
"KNN", strlen(
"KNN"))==0)
 
  319         SG_INFO(
"created KNN object\n")
 
  321     else if (strncmp(name,
"KMEANS", strlen(
"KMEANS"))==0)
 
  325         SG_INFO(
"created KMeans object\n")
 
  327     else if (strncmp(name,
"HIERARCHICAL", strlen(
"HIERARCHICAL"))==0)
 
  331         SG_INFO(
"created Hierarchical clustering object\n")
 
  333     else if (strcmp(name,
"SVMLIN")==0)
 
  340         SG_INFO(
"created SVMLin object\n")
 
  342 #ifdef USE_GPL_SHOGUN 
  343     else if (strncmp(name,
"WDSVMOCAS", strlen(
"WDSVMOCAS"))==0)
 
  349         ((CWDSVMOcas*) 
classifier)->set_degree(d, from_d);
 
  353         SG_INFO(
"created Weighted Degree Kernel SVM Ocas(OCAS) object of order %d (from order:%d)\n", d, from_d)
 
  355     else if (strcmp(name,
"SVMOCAS")==0)
 
  364         SG_INFO(
"created SVM Ocas(OCAS) object\n")
 
  366 #endif //USE_GPL_SHOGUN 
  367     else if (strcmp(name,
"SVMSGD")==0)
 
  372         SG_INFO(
"created SVM SGD object\n")
 
  374 #ifdef USE_GPL_SHOGUN 
  375     else if (strcmp(name,
"SVMBMRM")==0 || (strcmp(name,
"SVMPERF")==0))
 
  384         SG_INFO(
"created SVM Ocas(BMRM/PERF) object\n")
 
  387     else if (strcmp(name,
"MKL_CLASSIFICATION")==0)
 
  392     else if (strcmp(name,
"MKL_ONECLASS")==0)
 
  397     else if (strcmp(name,
"MKL_MULTICLASS")==0)
 
  402     else if (strcmp(name,
"MKL_REGRESSION")==0)
 
  409         SG_ERROR(
"Unknown classifier %s.\n", name)
 
  423     CLabels* trainlabels=
ui->ui_labels->get_train_labels();
 
  425         SG_ERROR(
"No trainlabels available.\n")
 
  427     CKernel* kernel=
ui->ui_kernel->get_kernel();
 
  431     bool success=
ui->ui_kernel->init_kernel(
"TRAIN");
 
  433     if (!success || !
ui->ui_kernel->is_initialized() || !kernel->
has_features())
 
  434         SG_ERROR(
"Kernel not initialized / no train features available.\n")
 
  438         SG_ERROR(
"Number of train labels (%d) and training vectors (%d) differs!\n", trainlabels->
get_num_labels(), num_vec)
 
  472         trainlabels=
ui->ui_labels->get_train_labels();
 
  474         SG_INFO(
"Training one class mkl.\n")
 
  475     if (!trainlabels && !oneclass)
 
  476         SG_ERROR(
"No trainlabels available.\n")
 
  478     CKernel* kernel=
ui->ui_kernel->get_kernel();
 
  482     bool success=
ui->ui_kernel->init_kernel(
"TRAIN");
 
  483     if (!success || !
ui->ui_kernel->is_initialized() || !kernel->
has_features())
 
  484         SG_ERROR(
"Kernel not initialized.\n")
 
  488         SG_ERROR(
"Number of train labels (%d) and training vectors (%d) differs!\n", trainlabels->
get_num_labels(), num_vec)
 
  527     bool result=mkl->
train();
 
  542         trainlabels=
ui->ui_labels->get_train_labels();
 
  544         SG_INFO(
"Training one class svm.\n")
 
  545     if (!trainlabels && !oneclass)
 
  546         SG_ERROR(
"No trainlabels available.\n")
 
  548     CKernel* kernel=
ui->ui_kernel->get_kernel();
 
  552     bool success=
ui->ui_kernel->init_kernel(
"TRAIN");
 
  554     if (!success || !
ui->ui_kernel->is_initialized() || !kernel->
has_features())
 
  555         SG_ERROR(
"Kernel not initialized / no train features available.\n")
 
  559         SG_ERROR(
"Number of train labels (%d) and training vectors (%d) differs!\n", trainlabels->
get_num_labels(), num_vec)
 
  636     if (!
ui->ui_distance->init_distance(
"TRAIN"))
 
  637         SG_ERROR(
"Initializing distance with train features failed.\n")
 
  647             ((
CKMeans*) classifier)->set_max_iter(max_iter);
 
  648             result=((
CKMeans*) classifier)->train();
 
  658             SG_ERROR(
"Unknown clustering type %d\n", type)
 
  666     CLabels* trainlabels=
ui->ui_labels->get_train_labels();
 
  675             if (!
ui->ui_distance->init_distance(
"TRAIN"))
 
  676                 SG_ERROR(
"Initializing distance with train features failed.\n")
 
  683             SG_ERROR(
"No distance available.\n")
 
  699     trainlabels=
ui->ui_labels->get_train_labels();
 
  701         SG_ERROR(
"No trainlabels available.\n")
 
  703     CKernel* kernel=
ui->ui_kernel->get_kernel();
 
  707     bool success=
ui->ui_kernel->init_kernel(
"TRAIN");
 
  709     if (!success || !
ui->ui_kernel->is_initialized() || !kernel->
has_features())
 
  710         SG_ERROR(
"Kernel not initialized / no train features available.\n")
 
  714         SG_ERROR(
"Number of train labels (%d) and training vectors (%d) differs!\n", trainlabels->
get_num_labels(), num_vec)
 
  721     bool result=krr->
train();
 
  732     CFeatures* trainfeatures=
ui->ui_features->get_train_features();
 
  733     CLabels* trainlabels=
ui->ui_labels->get_train_labels();
 
  737         SG_ERROR(
"No trainfeatures available.\n")
 
  740         SG_ERROR(
"Trainfeatures not based on DotFeatures.\n")
 
  755         SG_ERROR(
"LDA requires train features of class SIMPLE type REAL.\n")
 
  760 #ifdef USE_GPL_SHOGUN 
  774             SG_ERROR(
"LPM and LPBOOST require trainfeatures of class SPARSE type REAL.\n")
 
  784 #ifdef USE_GPL_SHOGUN 
  785 bool CGUIClassifier::train_wdocas()
 
  787     CFeatures* trainfeatures=
ui->ui_features->get_train_features();
 
  788     CLabels* trainlabels=
ui->ui_labels->get_train_labels();
 
  793         SG_ERROR(
"No trainfeatures available.\n")
 
  795     if (trainfeatures->get_feature_class()!=
C_STRING ||
 
  796             trainfeatures->get_feature_type()!=
F_BYTE )
 
  797         SG_ERROR("Trainfeatures are not of class STRING type BYTE.\n")
 
  802     ((CWDSVMOcas*) 
classifier)->set_labels(trainlabels);
 
  808 #endif //USE_GPL_SHOGUN 
  816         FILE* model_file=fopen(filename, 
"r");
 
  817         REQUIRE(model_file != NULL, 
"SVM/Classifier loading failed on file %s.\n", filename);
 
  825                 SG_DEBUG(
"file successfully read.\n")
 
  829                 SG_ERROR(
"SVM/Classifier creation/loading failed on file %s.\n", filename)
 
  834             SG_ERROR(
"Opening file %s failed.\n", filename)
 
  839         SG_ERROR(
"Type %s of SVM/Classifier unknown.\n", type)
 
  851         FILE* file=fopen(param, 
"w");
 
  855             printf(
"writing to file %s failed!\n", param);
 
  858             printf(
"successfully written classifier into \"%s\" !\n", param);
 
  866         SG_ERROR(
"create classifier first\n")
 
  907         SG_INFO(
"Disabling max_train_time.\n")
 
  915         SG_ERROR(
"No regression method allocated\n")
 
  921         SG_ERROR(
"Underlying method not capable of SV-regression\n")
 
  948     if (weight_epsilon<0)
 
  968   if (lambda<0 || lambda>1)
 
  978     SG_ERROR(
"1 <= mkl_block_norm <= inf\n")
 
 1039         SG_INFO(
"Enabling shrinking optimization.\n")
 
 1041         SG_INFO(
"Disabling shrinking optimization.\n")
 
 1050         SG_INFO(
"Enabling batch computation.\n")
 
 1052         SG_INFO(
"Disabling batch computation.\n")
 
 1061         SG_INFO(
"Enabling LINADD optimization.\n")
 
 1063         SG_INFO(
"Disabling LINADD optimization.\n")
 
 1072         SG_INFO(
"Enabling svm bias.\n")
 
 1074         SG_INFO(
"Disabling svm bias.\n")
 
 1083         SG_INFO(
"Enabling mkl interleaved optimization.\n")
 
 1085         SG_INFO(
"Disabling mkl interleaved optimization.\n")
 
 1095         SG_INFO(
"Enabling AUC maximization.\n")
 
 1097         SG_INFO(
"Disabling AUC maximization.\n")
 
 1141 #ifdef USE_GPL_SHOGUN 
 1146             SG_ERROR(
"unknown classifier type\n")
 
 1155     CFeatures* trainfeatures=
ui->ui_features->get_train_features();
 
 1156     CFeatures* testfeatures=
ui->ui_features->get_test_features();
 
 1159         SG_ERROR(
"No kernelmachine available.\n")
 
 1163     REQUIRE(
ui->ui_kernel->get_kernel(), 
"No kernel set");
 
 1164     if (
ui->ui_kernel->get_kernel()->get_kernel_type()!=
K_CUSTOM)
 
 1166         if (
ui->ui_kernel->get_kernel()->get_kernel_type()==
K_COMBINED 
 1167                 && ( !trainfeatures || !testfeatures ))
 
 1169             SG_DEBUG(
"skipping initialisation of combined kernel " 
 1170                     "as train/test features are unavailable\n")
 
 1175                 SG_ERROR(
"No training features available.\n")
 
 1177                 SG_ERROR(
"No test features available.\n")
 
 1179             success=
ui->ui_kernel->init_kernel(
"TEST");
 
 1183     if (!success || !
ui->ui_kernel->is_initialized())
 
 1184         SG_ERROR(
"Kernel not initialized.\n")
 
 1200     SG_INFO(
"Starting kernel machine testing.\n")
 
 1206     int32_t& brows, int32_t& bcols,
 
 1231             return get_svm(weights, rows, cols, bias, brows, bcols, idx);
 
 1242             return get_linear(weights, rows, cols, bias, brows, bcols);
 
 1252             SG_ERROR(
"unknown classifier type\n")
 
 1267     int32_t& brows, int32_t& bcols, int32_t idx)
 
 1283         weights=SG_MALLOC(
float64_t, rows*cols);
 
 1285         for (int32_t i=0; i<rows; i++)
 
 1299     int32_t& brows, int32_t& bcols)
 
 1320             centers=SG_MALLOC(
float64_t, rows*cols);
 
 1339             centers=SG_MALLOC(
float64_t, rows*cols);
 
 1340             for (int32_t i=0; i<rows*cols; i++)
 
 1347             SG_ERROR(
"internal error - unknown clustering type\n")
 
 1355     int32_t& brows, int32_t& bcols)
 
 1379     CFeatures* trainfeatures=
ui->ui_features->get_train_features();
 
 1380     CFeatures* testfeatures=
ui->ui_features->get_test_features();
 
 1384         SG_ERROR(
"no kernelmachine available\n")
 
 1389         SG_ERROR(
"no training features available\n")
 
 1395         SG_ERROR(
"no test features available\n")
 
 1399     bool success=
ui->ui_distance->init_distance(
"TEST");
 
 1401     if (!success || !
ui->ui_distance->is_initialized())
 
 1403         SG_ERROR(
"distance not initialized\n")
 
 1408         ui->ui_distance->get_distance());
 
 1409     SG_INFO(
"starting distance machine testing\n")
 
 1416     CFeatures* testfeatures=
ui->ui_features->get_test_features();
 
 1420         SG_ERROR(
"no classifier available\n")
 
 1425         SG_ERROR(
"no test features available\n")
 
 1430         SG_ERROR(
"testfeatures not based on DotFeatures\n")
 
 1435     SG_INFO(
"starting linear classifier testing\n")
 
 1439 #ifdef USE_GPL_SHOGUN 
 1442     CFeatures* testfeatures=
ui->ui_features->get_test_features();
 
 1451         SG_ERROR(
"no test features available\n")
 
 1454     if (testfeatures->get_feature_class() != 
C_STRING ||
 
 1455             testfeatures->get_feature_type() != 
F_BYTE )
 
 1457         SG_ERROR(
"testfeatures not of class STRING type BYTE\n")
 
 1465 #endif //USE_GPL_SHOGUN 
 1469     CFeatures* trainfeatures=
ui->ui_features->get_train_features();
 
 1470     CFeatures* testfeatures=
ui->ui_features->get_test_features();
 
 1478     if (!
ui->ui_kernel->is_initialized())
 
 1480         SG_ERROR(
"kernel not initialized\n")
 
 1484     if (!
ui->ui_kernel->get_kernel() ||
 
 1485         ui->ui_kernel->get_kernel()->get_kernel_type()!=
K_CUSTOM)
 
 1489             SG_ERROR(
"no training features available\n")
 
 1495             SG_ERROR(
"no test features available\n")
 
 1501         ui->ui_kernel->get_kernel());
 
 1525     if (strncmp(solver,
"NEWTON", 6)==0)
 
 1527         SG_INFO(
"Using NEWTON solver.\n")
 
 1530     else if (strncmp(solver,
"DIRECT", 6)==0)
 
 1532         SG_INFO(
"Using DIRECT solver\n")
 
 1535     else if (strncmp(solver,
"BLOCK_NORM", 9)==0)
 
 1537         SG_INFO(
"Using BLOCK_NORM solver\n")
 
 1540     else if (strncmp(solver,
"ELASTICNET", 10)==0)
 
 1542         SG_INFO(
"Using ELASTICNET solver\n")
 
 1545     else if (strncmp(solver,
"AUTO", 4)==0)
 
 1547         SG_INFO(
"Automagically determining solver.\n")
 
 1551     else if (strncmp(solver, 
"CPLEX", 5)==0)
 
 1553         SG_INFO(
"USING CPLEX METHOD selected\n")
 
 1558     else if (strncmp(solver,
"GLPK", 4)==0)
 
 1560         SG_INFO(
"Using GLPK solver\n")
 
 1565         SG_ERROR(
"Unknown solver type, %s (not compiled in?)\n", solver)
 
 1574     if (strcmp(name,
"LIBSVM_ONECLASS")==0)
 
 1578         SG_INFO(
"created SVMlibsvm object for oneclass\n")
 
 1580     else if (strcmp(name,
"LIBSVM_NU")==0)
 
 1584         SG_INFO(
"created SVMlibsvm object\n")
 
 1586     else if (strcmp(name,
"LIBSVM")==0)
 
 1590         SG_INFO(
"created SVMlibsvm object\n")
 
 1593     else if ((strcmp(name,
"LIGHT")==0) || (strcmp(name,
"SVMLIGHT")==0))
 
 1597         SG_INFO(
"created SVMLight object\n")
 
 1599     else if (strcmp(name,
"SVMLIGHT_ONECLASS")==0)
 
 1603         SG_INFO(
"created SVMLightOneClass object\n")
 
 1605     else if (strcmp(name,
"SVRLIGHT")==0)
 
 1609         SG_INFO(
"created SVRLight object\n")
 
 1611 #endif //USE_SVMLIGHT 
 1612 #ifdef USE_GPL_SHOGUN 
 1613     else if (strcmp(name,
"GPBTSVM")==0)
 
 1617         SG_INFO(
"created GPBT-SVM object\n")
 
 1619 #endif //USE_GPL_SHOGUN 
 1620     else if (strcmp(name,
"MPDSVM")==0)
 
 1624         SG_INFO(
"created MPD-SVM object\n")
 
 1626     else if (strcmp(name,
"GNPPSVM")==0)
 
 1630         SG_INFO(
"created GNPP-SVM object\n")
 
 1632     else if (strcmp(name,
"LIBSVR")==0)
 
 1636         SG_INFO(
"created SVRlibsvm object\n")
 
 1640         SG_ERROR(
"Unknown SV-classifier %s.\n", name)
 
void set_epsilon(float64_t eps)
SGVector< float64_t > get_radiuses()
float distance(CJLCoverTreePoint p1, CJLCoverTreePoint p2, float64_t upper_bound)
void set_shrinking_enabled(bool enable)
bool set_perceptron_parameters(float64_t lernrate, int32_t maxiter)
bool set_svm_epsilon(float64_t epsilon)
int32_t get_num_support_vectors()
void set_bias_enabled(bool enable_bias)
void set_mkl_block_norm(float64_t q)
Class KernelRidgeRegression implements Kernel Ridge Regression - a regularized least square method fo...
bool get_trained_classifier(float64_t *&weights, int32_t &rows, int32_t &cols, float64_t *&bias, int32_t &brows, int32_t &bcols, int32_t idx=-1)
CLabels * classify_linear()
void set_max_train_time(float64_t t)
bool set_svm_shrinking_enabled(bool enabled)
bool train_mkl_multiclass()
bool set_svm_linadd_enabled(bool enabled)
bool train_knn(int32_t k=3)
MKLMulticlass is a class for L1-norm Multiclass MKL. 
Template class StringFeatures implements a list of strings. 
static char * skip_spaces(char *str)
SGVector< float64_t > get_merge_distances()
Class Distance, a base class for all the distances used in the Shogun toolbox. 
void set_qpsize(int32_t qps)
bool set_constraint_generator(char *cg)
bool train_clustering(int32_t k=3, int32_t max_iter=1000)
void set_kernel(CKernel *k)
The class Labels models labels, i.e. class assignments of objects. 
virtual int32_t get_num_labels() const =0
bool set_svm_mkl_parameters(float64_t weight_epsilon, float64_t C_mkl, float64_t mkl_norm)
void set_shrinking_enabled(bool enable)
float64_t perceptron_learnrate
bool set_do_auc_maximization(bool do_auc)
L2 regularized SVM with L2-loss using newton in the primal. 
Class LPM trains a linear classifier called Linear Programming Machine, i.e. a SVM using a  norm regu...
bool set_svm_nu(float64_t nu)
Trains a one class C SVM. 
int32_t perceptron_maxiter
L1 regularized SVM with L2-loss using dual coordinate descent. 
CLabels * classify_byte_linear()
virtual bool load_serializable(CSerializableFile *file, const char *prefix="")
CLabels * setup_auc_maximization(CLabels *labels)
void set_mkl_norm(float64_t norm)
A generic KernelMachine interface. 
Multiple Kernel Learning for one-class-classification. 
Agglomerative hierarchical single linkage clustering. 
Features that support dot products among other operations. 
virtual int32_t get_num_vec_lhs()
class LibSVMMultiClass. Does one vs one classification. 
Multiple Kernel Learning for regression. 
generic kernel multiclass 
Class LDA implements regularized Linear Discriminant Analysis. 
A generic DistanceMachine interface. 
virtual void set_mkl_norm(float64_t norm)
void set_nu(float64_t nue)
bool classify_example(int32_t idx, float64_t &result)
bool set_svm_batch_computation_enabled(bool enabled)
CLabels * classify_distancemachine()
The AUC kernel can be used to maximize the area under the receiver operator characteristic curve (AUC...
void set_mkl_epsilon(float64_t eps)
void set_interleaved_optimization_enabled(bool enable)
Class SVRLight, performs support vector regression using SVMLight. 
CLabels * classify_kernelmachine()
bool new_classifier(char *name, int32_t d=6, int32_t from_d=40)
bool set_svr_tube_epsilon(float64_t tube_epsilon)
Class SGObject is the base class of all shogun objects. 
void set_constraint_generator(CSVM *s)
void set_batch_computation_enabled(bool enable)
KMeans clustering, partitions the data into k (a-priori specified) clusters. 
void set_batch_computation_enabled(bool enable)
bool set_svm_max_qpsize(int32_t max_qpsize)
void set_nu(float64_t nue)
bool set_solver(char *solver)
SGMatrix< int32_t > get_cluster_pairs()
float64_t svm_weight_epsilon
L2 regularized linear logistic regression. 
bool set_mkl_block_norm(float64_t mkl_bnorm)
This class provides an interface to the LibLinear library for large- scale linear learning focusing o...
bool set_mkl_interleaved_enabled(bool enabled)
Multiple Kernel Learning for two-class-classification. 
void set_qpsize(int32_t qps)
L2 regularized SVM with L2-loss using dual coordinate descent. 
void set_tube_epsilon(float64_t eps)
bool set_svm_bufsize(int32_t bufsize)
float64_t get_alpha(int32_t idx)
virtual EFeatureClass get_feature_class() const =0
Class KNN, an implementation of the standard k-nearest neigbor classifier. 
Class LinearMachine is a generic interface for all kinds of linear machines like classifiers. 
Multiple Kernel Learning. 
bool set_svm_bias_enabled(bool enabled)
virtual EMachineType get_classifier_type()
bool get_clustering(float64_t *&weights, int32_t &rows, int32_t &cols, float64_t *&bias, int32_t &brows, int32_t &bcols)
virtual SGVector< float64_t > get_w() const 
int32_t get_support_vector(int32_t idx)
bool get_svm(float64_t *&weights, int32_t &rows, int32_t &cols, float64_t *&bias, int32_t &brows, int32_t &bcols, int32_t idx=-1)
Class LPBoost trains a linear classifier called Linear Programming Machine, i.e. a SVM using a  norm ...
bool get_linear(float64_t *&weights, int32_t &rows, int32_t &cols, float64_t *&bias, int32_t &brows, int32_t &bcols)
bool train_linear(float64_t gamma=0)
Class LibSVR, performs support vector regression using LibSVM. 
Class Perceptron implements the standard linear (online) perceptron. 
ScatterSVM - Multiclass SVM. 
virtual bool save_serializable(CSerializableFile *file, const char *prefix="")
CSVM * constraint_generator
all of classes and functions are contained in the shogun namespace 
bool svm_do_auc_maximization
Class GMNPSVM implements a one vs. rest MultiClass SVM. 
training with bias using test rule 2 
The class Features is the base class of all feature objects. 
training with bias using test rule 1 
void set_linadd_enabled(bool enable)
virtual float64_t get_bias()
virtual bool train(CFeatures *data=NULL)
SGMatrix< float64_t > get_cluster_centers()
void set_mkl_epsilon(float64_t eps)
A generic Support Vector Machine Interface. 
void set_linadd_enabled(bool enable)
void set_elasticnet_lambda(float64_t elasticnet_lambda)
the LaRank multiclass SVM machine This implementation uses LaRank algorithm from Bordes, Antoine, et al., 2007. "Solving multiclass support vector machines with LaRank." 
void set_bias_enabled(bool enable_bias)
void set_epsilon(float64_t eps)
Matrix::Scalar max(Matrix m)
L2 regularized linear SVM with L1-loss using dual coordinate descent. 
void set_kernel(CKernel *k)
bool has_property(EFeatureProperty p) const 
float64_t svm_tube_epsilon
virtual bool has_features()
virtual void set_labels(CLabels *lab)
bool set_krr_tau(float64_t tau=1)
bool set_svm_C(float64_t C1, float64_t C2)
bool load(char *filename, char *type)
void set_solver_type(ESolverType st)
bool set_elasticnet_lambda(float64_t lambda)
bool svm_use_batch_computation
bool set_svm_qpsize(int32_t qpsize)
void set_C_mkl(float64_t C)
virtual EFeatureType get_feature_type() const =0
void set_C(float64_t c_neg, float64_t c_pos)
bool set_max_train_time(float64_t max)
void set_tube_epsilon(float64_t eps)
virtual CLabels * apply(CFeatures *data=NULL)