23 :
CMachine(), m_pos_pseudo(1e-10), m_neg_pseudo(1e-10),
24 pos_model(NULL), neg_model(NULL), features(NULL)
27 "pos_pseudo",
"pseudo count for positive class");
29 "neg_pseudo",
"pseudo count for negative class");
32 "pos_model",
"LinearHMM modelling positive class.");
34 "neg_model",
"LinearHMM modelling negative class.");
37 "features",
"String Features.");
57 SG_ERROR(
"Features not of class string type word\n")
84 pos_indizes[pos_idx++]=i;
86 neg_indizes[neg_idx++]=i;
106 SG_ERROR(
"Features not of class string type word\n")
SGVector< ST > get_feature_vector(int32_t num)
virtual ~CPluginEstimate()
virtual ELabelType get_label_type() const =0
float64_t apply_one(int32_t vec_idx)
classify the test feature vector indexed by vec_idx
virtual int32_t get_num_labels() const =0
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
virtual int32_t get_num_vectors() const
void free_feature_vector(ST *feat_vec, int32_t num, bool dofree)
A generic learning machine interface.
float64_t get_log_likelihood_example(uint16_t *vector, int32_t len)
void add(bool *param, const char *name, const char *description="")
Class SGObject is the base class of all shogun objects.
virtual void set_features(CStringFeatures< uint16_t > *feat)
CPluginEstimate(float64_t pos_pseudo=1e-10, float64_t neg_pseudo=1e-10)
virtual EFeatureClass get_feature_class() const =0
all of classes and functions are contained in the shogun namespace
The class Features is the base class of all feature objects.
virtual bool train_machine(CFeatures *data=NULL)
virtual bool train(CFeatures *data=NULL)
CStringFeatures< uint16_t > * features
Binary Labels for binary classification.
The class LinearHMM is for learning Higher Order Markov chains.
virtual EFeatureType get_feature_type() const =0