11 #ifndef _PLUGINESTIMATE_H___
12 #define _PLUGINESTIMATE_H___
84 uint16_t* vector, int32_t len)
96 uint16_t obs, int32_t position)
133 int32_t &seq_length, int32_t &num_symbols)
142 pos_params = log_pos_trans.
vector;
144 neg_params = log_neg_trans.
vector;
161 int32_t seq_length, int32_t num_symbols)
175 ASSERT(seq_length*num_symbols==num_params)
201 virtual const char*
get_name()
const {
return "PluginEstimate"; }
virtual int32_t get_sequence_length()
virtual const char * get_name() const
virtual ~CPluginEstimate()
virtual float64_t get_positional_log_parameter(uint16_t obs, int32_t position)
float64_t log_derivative_neg_obsolete(uint16_t obs, int32_t pos)
float64_t apply_one(int32_t vec_idx)
classify the test feature vector indexed by vec_idx
virtual float64_t get_log_derivative_obsolete(uint16_t obs, int32_t pos)
virtual int32_t get_num_symbols()
virtual CBinaryLabels * apply_binary(CFeatures *data=NULL)
virtual int32_t get_num_model_parameters()
float64_t get_parameterwise_log_odds(uint16_t obs, int32_t position)
bool get_model_params(float64_t *&pos_params, float64_t *&neg_params, int32_t &seq_length, int32_t &num_symbols)
A generic learning machine interface.
float64_t get_log_likelihood_example(uint16_t *vector, int32_t len)
MACHINE_PROBLEM_TYPE(PT_BINARY)
virtual void set_features(CStringFeatures< uint16_t > *feat)
CPluginEstimate(float64_t pos_pseudo=1e-10, float64_t neg_pseudo=1e-10)
float64_t log_derivative_pos_obsolete(uint16_t obs, int32_t pos)
virtual bool set_log_transition_probs(const SGVector< float64_t > probs)
float64_t posterior_log_odds_obsolete(uint16_t *vector, int32_t len)
all of classes and functions are contained in the shogun namespace
The class Features is the base class of all feature objects.
virtual bool train_machine(CFeatures *data=NULL)
virtual CStringFeatures< uint16_t > * get_features()
CStringFeatures< uint16_t > * features
Binary Labels for binary classification.
void set_model_params(float64_t *pos_params, float64_t *neg_params, int32_t seq_length, int32_t num_symbols)
virtual SGVector< float64_t > get_log_transition_probs()
The class LinearHMM is for learning Higher Order Markov chains.